Bibliography for “Childhood trauma explains pathology in chronic marijuana users” by M. Vipperman


Anderson G, Maes M. 2013. “Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression” Prog Neuropsychopharmacol Biol Psychiatry 42:5-19


Blair R. 2001. “Neurocognitive models of aggression, the antisocial personality disorders, and psychopathy” J Neurol Neurosurg Psychiatry 71: 727-731


Bossong M, Niesink R. 2010. “Adolescent brain maturation, the endogenous cannabinoid system and the neurobiology of


default-mode network activity as measured with fMRI” *Human Brain Mapping* 30: 3031-3042


Chang L, Yakupov R, Cloak C, Ernst T. 2006. “Marijuana use is associated with a reorganised visual-attention network and cerebellar hypoactivation” *Brain* 129(5): 1096-1112


Couper K, Blount D, Riley E. 2008. “IL-10: the master regulator of immunity to infection” *Journal of Immunology* 180(9):


Dalton V, Long L, Weickert C, Zavitsanou K. 2011. “Paranoid schizophrenia is characterized by increased CB1 receptor binding in the dorsolateral prefrontal cortex” *Neuropsychopharmacology* 36(8): 1620-1630


Fachner J. 2003. “Jazz, improvisation and a social pharmacology of music.” Music Therapy Today 4(3)

Fassbender C, Zhang H, Buzy W, Cortes C, Mizuiri D, Beckett L, Schweitzer J. 2009. “A lack of default network suppression is linked to increased distractibility in ADHD” *Brain Research* 1273: 114-128


Fuster D, Cheng D, Allensworth-Davies D, Palfai T, Samet J, Saitz R. 2014. “No detectable association between frequency of


psychosis” Schizophrenia Bulletin 34(6): 1111-1121


Vulnerability to Psychopathology." *Neuropsychopharmacology* 2012: 37, 2693-2701


Institute of Medicine. 2009. “Preventing Mental, Emotional and Behavioral Disorders Among Young People: Progress and Possibilities” *The National Academies Press*


hippocampal activity during an associative memory task.” *Eur Neuropsychopharmacol* 17(4):289-97

Jansen, K. 2004. *Ketamine: Dreams and Realities* MAPS


Kato M, Ohno-Shosaku T, HashimotoTani Y, Uchigashima M, Watanabe M. 2009. “Endocannabinoid-mediated control of
synaptic transmission” *Physiological Reviews* 89(1): 309-380


Laaris N, Good C, Lupica C. 2010. “Δ9-tetrahydrocannabinol is a full agonist at CB1 receptors on GABA neuron axon terminals in the hippocampus” Neuropharmacology 59(1-2): 121-7


López H. 2010. “Cannabinoid-hormone interactions in the regulation of motivational processes” Hormones and Behavior 58: 100-110


McPartland J, Guy G, Di Marzo V. 2014. “Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system” *PLOS ONE* 9(3) e89566


clinical status and antipsychotic effects” *Biol Psychiatry* 70(7): 663-671


“Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation” Science 334(6057): 809-813


Nunn, K. 2002. “Race, crime and the pool of surplus criminality: or why the ‘war on drugs’ was a ‘war on blacks’” Gender Race & Just 6: 381


review of the clinical and neurobiological evidence” Drug Test Anal 4(7-8):649-59


Sánchez-Blázquez P, Rodríguez-Muñoz M, Garzón J. 2014. “The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: implications in psychosis and schizophrenia” Front Pharmacol 4: 169

Sánchez-Blázquez P, Rodríguez-Muñoz M, Vicente-Sánchez A, Garzón J. 2013. “Cannabinoid receptors couple to NMDA receptors to reduce the production of NO and the mobilization of zinc induced by glutamate” Antioxid Redox Signal 19(15): 1766-1782


Sheline Y, Gado M, Price J. 1998. “Amygdala core nuclei volumes are decreased in recurrent major depression.” Neuroreport 9(9):2023-8


Smith G. 2014. “Estimating the population attributable fraction for schizophrenia when Toxoplasma gondii is assumed absent in human populations” Preventive Veterinary Medicine


Sonuga-Barke E, Castellanos F. 2007. “Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis” Neuroscience and Behavioral Reviews 31(7): 977-86

Sørensen H, Mortensen E, Schiffman J, Reinisch J, Maeda J, Mednick S. 2010 “Early developmental milestones and risk of schizophrenia. A 45-year follow-up of the Copenhagen Perinatal Cohort” Schizophr Res 118(0): 41-47


Zavitsanou K, Garrick T, Huang X. 2004. “Selective antagonist [3H]SR141716A binding to cannabinoid CB1 receptors is increased in the anterior cingulate cortex in schizophrenia” Prog Neuropsychopharmacol Biol Psychiatry 28(2):355-60

using resting-state fMRI” *Schizophrenia Research* 97: 194-205


